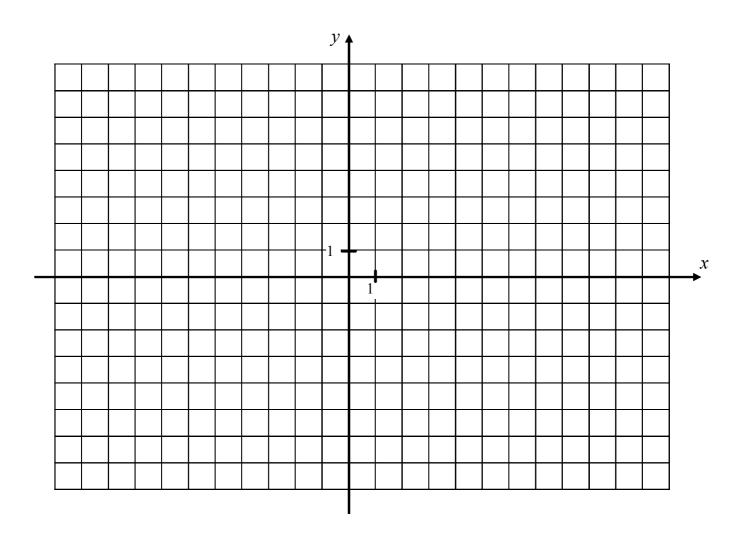
### **SERIE 31 – Les droites**

# Représentation graphique d'une droite


### **Définition:**

Pour définir une droite dans le plan  $\mathbb{R}^2$ , il suffit de donner deux points qui appartiennent à cette droite

#### **Exemples:**

Représenter graphiquement sur le repère ci-dessous :

- a) la droite f passant par <-2;-3> et <3;7>
- b) la droite g passant par (-6;1) et (4;-4)
- c) la droite h passant par (2;3) et (-5;3)
- d) la droite i passant par < 0; 0 > et < 5; 4 >



#### Exercice 1:

Représenter graphiquement les droites :

- a) j passant par <-2;+3> et <2;1>
- b) k passant par <-2;-4> et <0;2>
- c) **m** passant par < 0; 0 > et < 5; 0 >

## **Equation d'une droite :**

Pour définir une droite f dans le plan  $\mathbb{R}^2$ , on peut donner son équation :

$$f(x) = ax + b$$

(où a et b sont des nombres fixes donnés)

Cette droite est formée de tous les points  $\langle x, y \rangle$  tels que y = ax + b

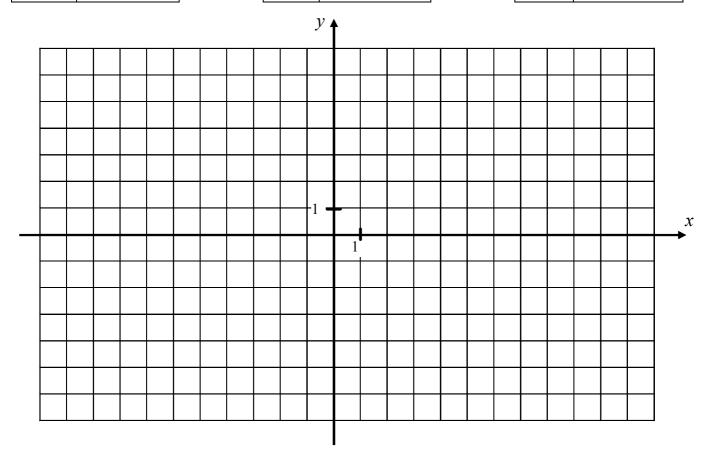
On note :  $f: \mathbb{R} \to \mathbb{R}$ 

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto y = ax + b$$

## **Exemple:**

Représenter graphiquement les droites :

a) 
$$f: x \mapsto y = 2x - 1$$


$$x$$
  $y = f(x)$ 
 $-1$ 
 $0$ 
 $+1$ 
 $+2$ 

b) 
$$g: x \mapsto -2x + 2$$

| X  | y = g(x) |
|----|----------|
| -1 |          |
| 0  |          |
| +1 |          |
| +2 |          |

c) 
$$h(x) = \frac{1}{4}x + 2$$

| 4  |          |
|----|----------|
| x  | y = h(x) |
| -4 |          |
| 0  |          |
| 4  |          |
| 8  |          |



## Exercice 2:

Représenter graphiquement les droites ci-dessous :

a) 
$$f: x \mapsto y = 3x + 1$$

b) 
$$g: x \mapsto y = -\frac{1}{2}x - 2$$

c) 
$$h: x \mapsto y = -2x$$