SERIE 13 Trigonométrie – Mesure d'angle

La mesure de l'angle

Les quatre unités principales de mesure d'un angle géométrique sont le **degré**, le **radian**, le grade et le tour.

Le degré peut être utilisé avec deux sous-unités : minute, seconde.

Une mesure peut donc être un nombre décimal ou un nombre en degré, minute, seconde.

Le degré:

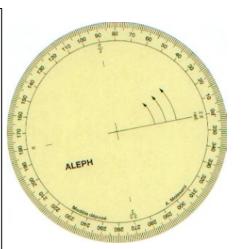
La mesure des angles en degrés correspond au plus ancien des modes de division du cercle. Il consiste à rapporter l'unité d'angle à une unité d'arc qui est la 360ème partie du cercle : arc ou angle-unité sont alors dits de un degré et noté 1°. Par définition on a:

• Il y a 90 degrés dans un Droit. Ce qui s'écrit: **1D=90°**.

• Il y a 60 minutes d'angle dans un degré. Soit: 1°=60' (Il faut remarquer apostrophe qui exprime les minutes d'angle et à ne pas confondre avec une durée).

Remarque: 1'=1°/60 ou 1/60 de degré

• Il y a 60 **secondes d'angle** dans une minute d'angle : **1'=60"** Donc: 1°=60 x 60=3600" (60' valant chacune 60"). Remarque: 1"=1°/3600 ou 1'/60.



Exemples:

1) **45°20'50"** soit 45.3600 + 20.60 + 50 = 163250"

La manipulation de ces unités se fait comme avec les unités de durée.

Aussi: $45^{\circ}20'50'' = 45^{\circ} + 20/60 + 50/3600 = 45 + 0,333333 + 0,0138 = 45,347^{\circ}$

2) En général, nous n'utilisons pas les sous multiples du degré (écriture sexagésimale). Nous préférons utiliser une écriture décimale.

Par exemple: 30.5° ne signifie pas 30° et 5 minutes d'angle mais 30° et $0.5^{\circ} = 0.5 \cdot 60 = 30'$ finalement: $30.5^{\circ} = 30^{\circ}30'$

Exercice 1:

Effectuer les conversions demandées.

Remarque:

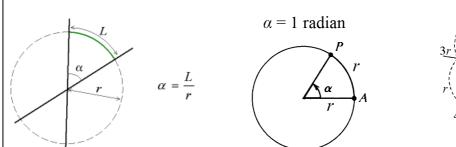
- La navigation maritime à conduit à la mesure en **gradient** où $90^{\circ} = 100 \text{ gr}$
- Le **tour** utilisé conjointement avec les vitesses angulaire est largement utilisé en mécanique donne que 1 tour = 360°

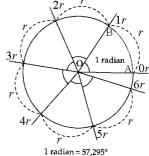
-1-

En premier lieu la nécessité du radian est du domaine de **l'analyse** (pour ne citer que les fonctions trigonométriques). Néanmoins en géométrie la mesure des angles en radian simplifie considérablement la relation entre la longueur d'un arc L et l'angle dont il rend la mesure α , en effet un arc représente en effet autant de radian qu'il mesure de rayons.

Le radian:

Un radian, noté rad, est la mesure d'un angle au centre sous-tendu par un arc L égale au rayon du cercle r.





En comptant le nombre de reports qui seraient nécessaires pour couvrir le cercle entier on trouve environ « 6 fois et 1 quart ». Rien d'étonnant, car c'est comme si on cherchait à mesurer la longueur du cercle avec son rayon comme unité. 1 tour = $2\pi r \approx 6,28r$

Si on prend le rayon pour unité de longueur on peut alors énoncer que :

« Sur un cercle unité, la mesure de la longueur d'un arc et celle de l'angle qui si rapporte expriment le même nombre. »

Donc:
$$360^{\circ} = 2\pi \text{ rad.}$$
 $1 \text{ rad} = \frac{360^{\circ}}{2\pi} \approx 57.3^{\circ}$

Aussi: $180^{\circ} = \pi$ rad.

Remarque:

- L'expression d'un angle sans indication d'unité signifie une mesure en radian. La mesure en degré doit être expressément indiquée.
- Il est bien plus commode d'exprimer une mesure en radian par des facteurs de π que par un nombre décimal. Cela donne des divisions rationnelles du cercle.
- Le passage des degrés en radians et réciproquement est un simple exercice de proportion.

$$\frac{x^{\circ}}{180^{\circ}} = \frac{y \text{ rad.}}{\pi}$$

Exercice 2:

Compléter le tableau suivant :

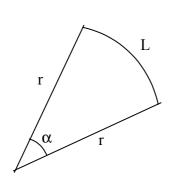
D	egrés	0°	30°			90°	120°				300°
Ra	adians			$\frac{\pi}{4}$	$\frac{\pi}{3}$				π	$\frac{3\pi}{2}$	

17,5°			160°
	1,2	2,1	

Représenter ensuite ces angles sur le cercle trigonométrique.

Application sur le secteur d'un disque :

 α en degrés α' en radians

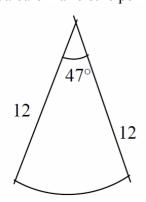


Aire:
$$A = \frac{\alpha}{360^{\circ}} \cdot \pi \cdot r^2 = \frac{1}{2} r^2 \alpha$$
'

Longueur:
$$L = \frac{\alpha}{360^{\circ}} \cdot 2 \cdot \pi \cdot r = r \cdot \alpha$$

Exercice 3

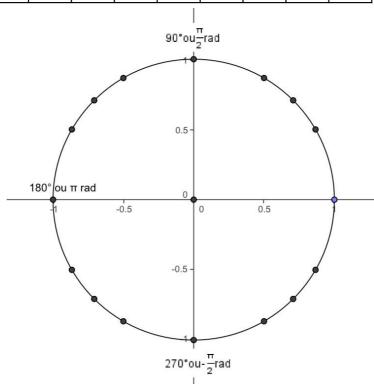
Calculer l'aire et le périmètre de la figure suivante :



Exercice 4

Placer sur le cercle les points correspondants aux angles orientés dont les mesures α sont données dans le tableau.

Points	A	В	С	D	Е	F	G	Н	K	L
Dadiana	3π	5π	-4 π	13π	- 23π	51-	- 38π	43π	- 28π	11π
Radians	$\frac{-}{4}$	6	3	3	4	51π	3	4	6	2



Vitesses angulaire & vitesse linéaire:

• La vitesse angulaire d'une roue qui tourne à vitesse constante est l'angle généré par unité de temps du segment de droite allant du centre de la roue au point P sur la circonférence.

$$\omega = \frac{\theta}{t}$$
 Elle peut-être exprimée [rad/s], [rad/min], [tours/m], ...

• Or la vitesse linéaire d'un point P sur cette même circonférence est la distance « horizontale » ou linéaire parcourue par unité de temps.

$$v = \frac{d}{t}$$
 Elle peut-être exprimée [m/s], [km/h], ...

Remarque:

- La fréquence est définie par : $\omega = 2\pi f$
- La vitesse angulaire ne dépend par du diamètre de la roue, il n'en est pas de même de la vitesse linéaire.
- L'utilisation de la longueur d'un segment permet de passer de l'une à l'autre. : $v = \omega \cdot r$

Exercice 5*:

Supposons qu'une roue de voiture de 50 cm de diamètre tourne à la vitesse constante de 1600 tpm.

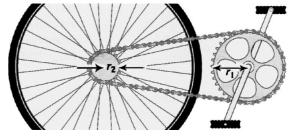
a) Donner la vitesse angulaire de la roue.

b) Trouver la vitesse linéaire.

Exercice 6*:

Sur la figure ci-contre on voit la mécanique d'une bicyclette avec r_1 = 13 cm et r_2 = 5 cm.

Un cycliste expérimenté peut atteindre une vitesse de 64 km/h. Si la roue a un diamètre de 71 cm évaluer la vitesse en tours/min du pignon avant pour atteindre une telle vitesse linéaire.



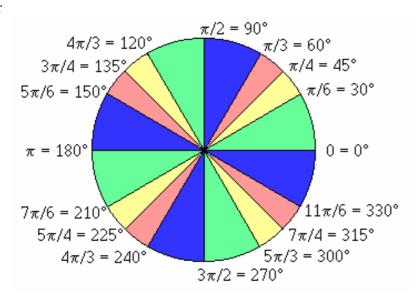
Indications:

On peut travailler avec θ_1 et θ_2 en radians et rendre compte de leur relation avec r_1 et r_2 . Aussi convertir les km/h en cm/s peut être plus commode.

Solutions:

Ex 1 :

Ex 2:

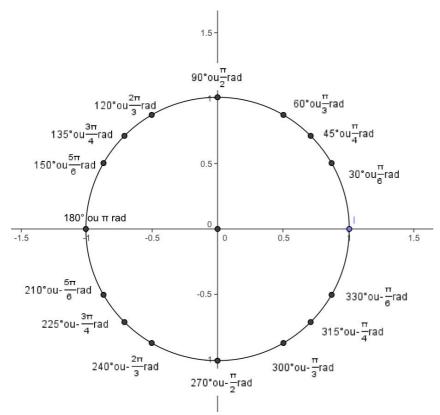


<u>Ex 3</u>:

 $A = 59,06 \text{ cm}^2$

P = 33,84 cm

Ex 4:



Ex 5: a) 167,5 rad/s; b) 150,8 km/h

Ex 6: 184 tours/min